LOGARITHMS AND EXPONENTIAL GROWTH/DECAY

Math 130 - Essentials of Calculus

24 March 2021

Inverse Functions

Square-roots (\sqrt{x}) undo squares (x^2) , cube-roots $(\sqrt[3]{x})$ undo cubes (x^3) , but what undoes an exponential function?

INVERSE FUNCTIONS

Square-roots (\sqrt{x}) undo squares (x^2) , cube-roots $(\sqrt[3]{x})$ undo cubes (x^3) , but what undoes an exponential function?

The *inverse* of an exponential function is called a *logarithmic function*.

Inverse Functions

Square-roots (\sqrt{x}) undo squares (x^2) , cube-roots $(\sqrt[3]{x})$ undo cubes (x^3) , but what undoes an exponential function?

The inverse of an exponential function is called a logarithmic function.

DEFINITION

Let b > 0 be a real number with $b \neq 1$. The logarithm with base b is the function

$$f(x) = \log_b x$$

which satisfies the property

$$\log_b x = y \iff b^y = x.$$

When the base of the logarithm is the natural number e, we write ln x instead and call it the natural logarithm.

EXAMPLE

Find the exact value of the following

log₂ 64

EXAMPLE

- log₂ 64
- log₂ 8

EXAMPLE

- log₂ 64
- log₂ 8
- log₈ 2

EXAMPLE

- log₂ 64
- log₂ 8
- log₈ 2
- \bullet In e^3

EXAMPLE

- log₂ 64
- log₂ 8
- log₈ 2
- **●** In *e*³
- 6 e^{ln 4}

EXAMPLE

- log₂ 64
- log₂ 8
- log₈ 2
- **1** In *e*³
- 6 e^{ln 4}
- In e

EXAMPLE

- log₂ 64
- log₂ 8
- log₈ 2
- **1** In *e*³
- 6 e^{ln 4}
- E...
- In e
- In 1

EXAMPLE

- log₂ 64
- log₂ 8
- log₈ 2
- \bullet In e^3
- **6** e^{ln 4}
- •
- In e
- In 1

EXAMPLE

- log₂ 64
- 2 log₂ 8
- log₈ 2
- \bullet In e^3
- 6 e^{ln 4}
- In e
- In 1
- \bullet $e^{\ln x}$

The only function type that we've covered and not yet taken the derivative of is a logarithmic function. We can accomplish this derivative by using implicit differentiation and rewriting $y = \ln x$.

The only function type that we've covered and not yet taken the derivative of is a logarithmic function. We can accomplish this derivative by using implicit differentiation and rewriting $y = \ln x$. Using properties of logarithms, we can rewrite it as

$$e^y = x$$
.

The only function type that we've covered and not yet taken the derivative of is a logarithmic function. We can accomplish this derivative by using implicit differentiation and rewriting $y = \ln x$. Using properties of logarithms, we can rewrite it as

$$e^{y} = x$$
.

Taking the derivative, we get

$$e^{y}\frac{dy}{dx}=1$$

The only function type that we've covered and not yet taken the derivative of is a logarithmic function. We can accomplish this derivative by using implicit differentiation and rewriting $y = \ln x$. Using properties of logarithms, we can rewrite it as

$$e^{y} = x$$
.

Taking the derivative, we get

$$e^{y}\frac{dy}{dx}=1$$

so that

$$\frac{dy}{dx} = \frac{1}{e^y}$$

The only function type that we've covered and not yet taken the derivative of is a logarithmic function. We can accomplish this derivative by using implicit differentiation and rewriting $y = \ln x$. Using properties of logarithms, we can rewrite it as

$$e^{y} = x$$
.

Taking the derivative, we get

$$e^{y}\frac{dy}{dx}=1$$

so that

$$\frac{dy}{dx} = \frac{1}{e^y}$$

In this case, we'd really like an expression for the derivative that has only x in it, and since we know $e^y = x$, just plug that in to get

$$\frac{dy}{dx} = \frac{1}{x}$$

EXAMPLES

EXAMPLE

Find the derivative of the given functions

$$y = 3x - 2 \ln x$$

EXAMPLES

EXAMPLE

Find the derivative of the given functions

$$y = 3x - 2 \ln x$$

$$f(x) = \ln x^2$$

EXAMPLES

EXAMPLE

Find the derivative of the given functions

$$y = 3x - 2 \ln x$$

$$f(x) = \ln x^2$$

$$y = \sqrt[5]{\ln x}$$

$$y = x \ln(1 + e^x)$$

Suppose you have an investment of \$1000 that grows at 5% per year, then after 1 year it is worth

$$1000(1 + 0.05) = 1000(1.05)$$

Suppose you have an investment of \$1000 that grows at 5% per year, then after 1 year it is worth

$$1000(1+0.05) = 1000(1.05)$$

and after two years

$$[\$1000(1.05)](1.05) = \$1000(1.05)^2.$$

Suppose you have an investment of \$1000 that grows at 5% per year, then after 1 year it is worth

$$1000(1+0.05) = 1000(1.05)$$

and after two years

$$[\$1000(1.05)](1.05) = \$1000(1.05)^2.$$

Generally, after t years, the investment has a value of

$$1000(1.05)^t$$
.

Suppose you have an investment of \$1000 that grows at 5% per year, then after 1 year it is worth

$$1000(1+0.05) = 1000(1.05)$$

and after two years

$$[\$1000(1.05)](1.05) = \$1000(1.05)^2.$$

Generally, after t years, the investment has a value of

$$1000(1.05)^t$$
.

Similarly, it is possible to look at something whose value shrinks at a constant percentage: for example, say the value of a \$20000 car decreased by 15% per year, then the value after the first year would be

$$20000(1 - .15) = 20000(0.85)$$

and after t years it would be worth

EXAMPLE

EXAMPLE

A rare sculpture was purchased for \$11.8 million and its value is expected to increase 14% per year.

- Write an equation for the function that gives the value of the sculpture after t years.
- What is the value of the sculpture after 3.25 years?
- After how many years will the sculpture be worth \$20 million?

Now You Try It!

EXAMPLE

The eagle population in a state park is currently 1650 but is expected to decrease 18% per year.

- Write an equation for the function that gives the number of eagles in the park t years from now.
- Determine the time required for the population to be reduced to 1000.
- What is the rate of change of the population after four years?

Compound Interest

If a savings account earns an annual interest rate of r (expressed as a decimal, not a percentage), then the future value of the account after t years with an initial investment of P dollars would be

$$A(t) = P(1+r)^t.$$

Compound Interest

If a savings account earns an annual interest rate of r (expressed as a decimal, not a percentage), then the future value of the account after t years with an initial investment of P dollars would be

$$A(t) = P(1+r)^t.$$

More typically, you will have a compounding period of less than a year, such as monthly or quarterly. If the compounding happens n times per year (e.g., n=4 for quarterly compounding), then the interest rate per quarter will be given by $\frac{r}{n}$, where r is still given as a yearly rate. In this case, the future value after t years will be

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}.$$

Compounding Continuously

It is also possible to increase the compounding to happen at every instant of time, which would correspond to taking the limit as $n \to \infty$.

$$\lim_{n \to \infty} A(t) = \lim_{n \to \infty} P\left(1 + \frac{r}{n}\right)^{nt}$$

$$= \lim_{n \to \infty} P\left[\left(1 + \frac{r}{n}\right)^{n/r}\right]^{rt}$$

$$= P\left[\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^{n/r}\right]^{rt}$$

$$= P\left[\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$

$$= Pe^{rt}$$

EXAMPLE

EXAMPLE

If \$3000 is invested at 5% interest, find the value of the investment if interest is compounded

- annually
- quarterly
- monthly
- continuously

How long will it take for the value of the investment to double if the interest is compounded quarterly?